Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2.

نویسندگان

  • Richard A James
  • Romola J Davenport
  • Rana Munns
چکیده

Durum wheat (Triticum turgidum L. subsp. durum Desf.) Line 149 contains two novel major genes for excluding Na(+) from leaf blades, named Nax1 and Nax2. The genes were separated into families containing a single gene and near-isogenic homozygous lines were selected. Lines containing either Nax1 or Nax2 had lower rates of Na(+) transport from roots to shoots than their near-isogenic pairs due to lower rates of net loading of the xylem, not to lower rates of net uptake from the soil or higher rates of retranslocation in the phloem. Nax1 and Nax2 lines also had higher rates of K(+) transport from root to shoot, resulting in an enhanced discrimination of K(+) over Na(+). Lines containing Nax1 differed from those containing Nax2 by unloading Na(+) from the xylem as it entered the shoot so that Na(+) was retained in the base of the leaf, leading to a high sheath to blade ratio of Na(+) concentration. Gradients in tissue concentrations of Na(+) along the leaf suggested that Na(+) was continually removed from the xylem. The Nax2 line did not retain Na(+) in the base of the leaf, suggesting that it functioned only in the root. The Nax2 gene therefore has a similar function to Kna1 in bread wheat (Triticum aestivum).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat

Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+...

متن کامل

A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat.

Durum wheat (Triticum turgidum subsp. durum) is more salt sensitive than bread wheat (Triticum aestivum). A novel source of Na(+) exclusion conferring salt tolerance to durum wheat is present in the durum wheat Line 149 derived from Triticum monococcum C68-101, and a quantitative trait locus contributing to low Na(+) concentration in leaf blades, Nax1, mapped to chromosome 2AL. In this study, w...

متن کامل

HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1.

Bread wheat (Triticum aestivum) has a greater ability to exclude Na+ from its leaves and is more salt tolerant than durum wheat (Triticum turgidum L. subsp. durum [Desf.]). A novel durum wheat, Line 149, was found to contain a major gene for Na+ exclusion, Nax2, which removes Na+ from the xylem in the roots and leads to a high K+-to-Na+ ratio in the leaves. Nax2 was mapped to the distal region ...

متن کامل

بررسی غلظت سدیم و نسبت پتاسیم به سدیم به‌عنوان ملاک تحمل به شوری در گندم و جو

Most researches on wheat and barley breeding for salt tolerance have focused mainly on excluding Na+ from different tissues but the results of some experiments suggest that contribution of Na+ exclusion to salt tolerance is overshadowed by other physiological responses. Three bread wheat cultivars differing in salt tolerance (Arg, Tajan and Baharan) and one barley cultivar (Nik) were employed t...

متن کامل

Use of wild relatives to improve salt tolerance in wheat.

There is considerable variability in salt tolerance amongst members of the Triticeae, with the tribe even containing a number of halophytes. This is a review of what is known of the differences in salt tolerance of selected species in this tribe of grasses, and the potential to use wild species to improve salt tolerance in wheat. Most investigators have concentrated on differences in ion accumu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 4  شماره 

صفحات  -

تاریخ انتشار 2006